Crashworthiness of an electric prototype vehicle series
The Shell Eco-marathon (SEM) is a challenge for student teams to develop energy-efficient vehicles and demonstrate the fuel efficiency of their prototypes. In Europe, this takes place at the Lausitz Ring in Germany. Since 2009, the Schluckspecht team has taken part in the Urban Concept category of the SEM. The specification of the vehicles which start in the Urban Concept Group requires resemblance to roadworthy cars. In the last quarter of 2009, the University of Applied Sciences Offenburg (FHO) where the team is located and the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI, Freiburg, set up a cooperation to improve safety of the prototype Schluckspecht City. Fraunhofer EMI deals with physical-technical aspects of high-speed, mechanical, and fluid- dynamic processes. This includes experimental and numerical analyses of crash, impact and penetration processes in a broad range of speeds from 10 m/s to 10,000 m/s, the response of structures to shock loads, dynamic material response and vehicle safety.
https://www.dynamore.de/de/download/papers/konferenz11/papers/session1-paper3.pdf/view
https://www.dynamore.de/@@site-logo/DYNAmore_Logo_Ansys.svg
Crashworthiness of an electric prototype vehicle series
The Shell Eco-marathon (SEM) is a challenge for student teams to develop energy-efficient vehicles and demonstrate the fuel efficiency of their prototypes. In Europe, this takes place at the Lausitz Ring in Germany. Since 2009, the Schluckspecht team has taken part in the Urban Concept category of the SEM. The specification of the vehicles which start in the Urban Concept Group requires resemblance to roadworthy cars. In the last quarter of 2009, the University of Applied Sciences Offenburg (FHO) where the team is located and the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI, Freiburg, set up a cooperation to improve safety of the prototype Schluckspecht City. Fraunhofer EMI deals with physical-technical aspects of high-speed, mechanical, and fluid- dynamic processes. This includes experimental and numerical analyses of crash, impact and penetration processes in a broad range of speeds from 10 m/s to 10,000 m/s, the response of structures to shock loads, dynamic material response and vehicle safety.